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Neural Networks

* The perceptron model
* Building neural networks
* Training neural networks

* Handle Overfitting

Part II: Convolutional Neural Networks




Deep Learning in the landscape

* Techniques enabling

Artificial Intelligence  computers to mimic
human behaviour

* When computers can

Machine Learning learn without being
explicitly programmed

 Extract patterns using
(deep) neural networks

Deep Learning

What is the history behind the current AI boom?
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Deep Learning

What society thmks Ido What my friends think I do

What mathematicians think I do What | think | do

Deep Leammg

40

What society thinks | do

What mathematicians think 1 do What | think | do

What other computer
scientists think | do

from keras import *

What I actually do

What other computer
scientists think | do

What | actually do
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What other computer

scientists think | do

Hi ChatGPT, I am lazy efficient,

code this for me

What mathematicians think I do What | think |1 do What I actually do

During my PhD, I have used Deep Learning for:

Tropical Cyclone
Forecasting

Wildlife
Identification

Healthcare
Operations

. Stamp analytics
Tumor segmentation




AlphaFold

An Al system developed by DeepMind that predicts a protein’s 3D

structure from its amino acid sequence.

Method of th T
Protein structure prediction

DALL_E iﬂ 2022 https://openai.com/blog/dall-¢/

BabyShark in an existential crisis after its Pikachu very proud for its first day at MIT
overwhelming success on YouTube
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DALL-E Prompt: an illustration of a baby shark in pajamas staring at its DALL-E Prompt: an illustration of a pikachu with a cape holding a
reflection in the mirror calculator




DALL‘ E ifl 2022 https://openai.com/blog/dall-¢/

BabyShark in an existential crisis after its

. Pikach d for its fi
overwhelming success on YouTube thachu very proud forts g

DALL-E Prompt: an illustration of a baby shark in pajamas staring at its DALL-E Prompt: an illustration of a pikachu with a cape holding a
reflection in the mirror calculator

Same prompts in 2023...

Midjourney

DALL-E 2 | =
DALL-E 2 12




I launched my
digital artist
career!
Exhibition
coming soon!




With great power comes great respon51b1hty

AT that recognizes faces from the whole world Real-time satellite analysis to get trading side information

Michelle Obama

Bias, racism Killer drones, Al-powered weapons

With great power comes great respon51b1hty

BUSINESS » TECHNOLOGY

Exclusive: OpenAl Used Kenyan Workers on
ar - Less Than $2 Per Hour to Make ChatGPT Less o
Toxic

Bias, racism Killer drones, Al-powered weapons
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AI mor atOl‘ lum Elon Musk and Others Call for Pause
’ onA.L, Citing ‘Profound Risks to

AT alignment, vad

More than 1,000 tech leaders

Scale is all you need.

Sam Altman
¥ gradient descent candoit
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Part 1: Fundamentals of l{Teure{l

Nétworks




A simplified perceptron

Looks like a regression!

How can we separate the red and green points?

.“o
.
9x
.
-
-
o
F-
.
..

2
.
"

(X

L] o V
@ ®
.‘
.
Fo
2
3

06 o.:{.,.. %woav ]

0s

| e A & 3 e
5 :

10



Using activation functions!

z=wy + z WiXi —— Y = g(2), where gis a non-linear activation function.
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Linear activation functions produce linear decisions Non-linear activations can help
no matter the network size. approximate arbitrarily complex functions.

Classic Activation Functions

Linear activation Sigmoid activation

“How important
1s that node?”

(] :
> “How important
4 18 that node?”

“Is this node important?
If so, how much?”

P48 210 “Is this node important?”
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The full perceptron: forward propagation

a -
" g —\y> y= g(z wiX;)
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Artificial Neuron vs Brain Neuron
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One-layer Neural Network

WUJ

Xy
X2

Xm

Inputs Hidden Final Output
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Picture source: http://introtodeeplearning.com

Deep Neural Network

input layer hidden layer 1 hidden layer 2 hidden layer 3

26
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L.oss function

The loss of our network measures the cost incurred from incorrect predictions.

L(f (D5 w), y©)

Predicted Actual

Picture source: http://introtodeeplearning.com

Empirical Loss

The empirical loss measures the total loss over our entire dataset.
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+  Objective function
+  Cost function

*  Empirical Risk Predicted Actual

1o . .
Also known as: ‘/L’](W) _— —Z L(f(xa); W), y(L))
n i=1

Picture source: http://introtodeeplearning.com/
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Flﬂdlﬂg the Best Model Fit (explanation on the board)
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+ The parameters (“weights”) are chosen to maximize the model’s
quality of fit—so the predictions §; match the observations y;

regression

n

.1 L
min 3 (5 — 5)?

i=1

classification

T
min — Z i log( i)
i=1

Nonlinear Optimization

local global
minima minimum
:
1 1
] 1
1 1
1 1
+ 4t ” + Ly b
Xy X Xy

Deep learning loss functions
often have many local minima.

= Deep learning outputs may not be
the best possible ones.

However, many local minima often
lead to similar solutions.

= Deep learning outputs are often
surprisingly “good enough”!
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Training Neural Networks looks Hard!

Problem 1: Need to optimize a huge number of weights W.
Problem 2: Loss landscape not smooth at all.

Fortunately there 1s Gradient Descent!

Objective: Minimizing average loss function of the neural network W)

Compute gradient, e

N
TW) = 5 S L (i W)
T =l

Algorithm: _f . ‘ A

1. Initialize weight matrix W S LSS
2. Backpropagation: Loop until convergence... P w s
a. Forward pass: Compute the predictions and the loss Wu P Lo

b. Backward pass: Compute the gradient ;’:;
(i.e., what happens if we change the weights just a tiny bit)

C. Update: W e W — n.{_;j_w a: “learning rate”

3. Return the weight matrix Wand the predictions.

16



And backpropagation with chain rule

w,y W
x >z, ey ) —
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Picture source: http://introtodeeplearning.com

But how do you choose the learning rate?

Remember:
Optimization through gradient descent

aj (W)

WeW-n—3w

I

How can we set
the learning rate?

Ideas?
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Adaptive Learning Rate

Learning rate is not fixed anymore, instead we can adapt it depending on:
- How large gradients are,
- How fast the learning is happening (momentum),

In Deep Learning, Adam is an extremely popular method and does all this automatically.
You still need to choose a base value (typically between 103/5.10 that depends on the
task and architecture.)

Learning rate too low Just right Too high
() 16) 1(8) '\
—_—
g . g
o o 8

Another problem: computing gradients is
expensivel!

Objective: Minimizing average loss function of the neural network

N
TW) = = 3£ W).w)
T =l

Algorithm:

1. Initialize weight matrix W
2. Backpropagation: Loop until convergence...
a. Forward pass: Compute the predictions and the loss

b. Backward pass: Cornpute the gradient % ———————> LExpensive to compute
i
c. Update:
aJ
WeW-—o
4 ¥ (}W

3. Return the weight matrix Wand the predictions.

18



Solution: Stochastic Gradient Descent

Objective: Minimizing average loss function of the neural network

N
1
JW) =+ E L(f(zi, W), u:)
o=l

Algorithm:

1. Initialize weight matrix W
2. Backpropagation: Loop until convergence...
a. Forward pass: Compute the predictions and the loss

b. Backward pass: Compute the gradient % f———————> Expensive to compute
L
c. Update:
W« W —ao el Batch Gradient Descent
IW

agw) _ ‘1‘23 9Jk(W)
3. Return the weight matrix Wand the predictions. aw — BEKEL ow
We use mini-batches while training
allowing for a smoother convergence
and larger learning rates.

Another classic MLL problem: overfitting

Y Y Y
[
L
L a8 ]
B g 'L
o ]
s® »

>
Underfitting Ideal Fit Overfitting
Model does not have capacity Too complex,

to fully learn the data does not generalize well
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Overfitting in Neural Networks 1/3

Overfitting #1: The neural network is “too complex”

* Too many hidden layers,

¢ Too many nodes in each layer.

— Some neurons learn all the signal and others become useless, which is bad for
generalization.

Regularization idea #1: Drop-out

Randomly dropping (i.c., setting to 0) some nodes in the network during training to
force the network to not rely on just a few nodes.

“iZ21
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HiE2a3 Lt
X3
214 Z24

Overfitting in Neural Networks 2/3

Opvertitting #2: The neural network is “too well trained”.

Regularization idea #2: Early Stopping
Stop the training early—after a moderate number of iterations—before the in-sample
loss is completely minimized.

Over-fitting

Under-fitting

Legend

Stop training
here!

Loss

Testin g

Training
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Overfitting in Neural Networks 3/3

Regularization idea #3: Embed regularization ideas in the training of neural networks,
in the objective of the non-linear optimization.
* Recall the objective of minimizing the empirical loss:

N
TW) =+ 3" L(f(, W).4)
i=1

* We can penalize this loss-minimization objective as follows
(analog of ridge regression in the context of neural networks)

min (J(W) + A x Z Z “"'?ﬁ;)

iclayers kenodes of i

Summary: The 3 Regularization Techniques

Regularization 1: Dropout Regularization 2: Early Stopping
- :!.l [} One
*Ea v
2 Less ‘-I - A
o M
- & # ——
“Ea T34
9
Training iterations
Regularization 3: L1 or L2 penalty on the NN weights.
Picture sources: http://introtodeeplearning.com/
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Quick ChatGPT demo:
Classitying MNIST digits
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Summary of the neural networks fundamentals

The Perceptron

e Structure
* Nonlinear activation
functions

5 -

F A wy .

P /

~ zZ=wy+ Zwm
T

Neural Networks

e Stacking layers of
perceptrons

* Backpropagation
and gradient descent
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@ ®
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Convolutional
Neural
Networks

4|

/ A

Overall Architecture of a CNN

Input Output

Pooling Pooling Pooling

750 73 e T o 2

SoftMax
Convolution Convolution  Convolution - '?E'r“:aﬁt;"
T 0 i
Kernel RelU RelU RelU Flatten
Layer
~—————————————Feature Maps——————————————»
| | B
Feature Extraction Classification Probabilistic
Distribution

Images source: https:/ /www.analyticsvidhy: blog/2021/05/20-q




Convolution Operation

Padding: 1 Padding: 1
Stride: 1 Stride: 2

4
Convolved
Feature
47
Images source: https:/, de- cural-networks-the-cl bd2b1164a53
3-dimensional data and Conv2D (optional)
Filter 1
Input
0 E .l—..l.-.—l_-.-|=: I—-|:rr.-:1=.=-. 1ﬂ.-— pazc Output
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Pooling

max pooling
20|30
112| 37
121201 30| 0
8 1121 2| 0
34(70| 37| 4 average pooling .,_o oo
112[100] 25| 12 13| 8 3.0|3.0]3.0
79 20 3.0]20]|30
49
Images source: htps:/ 3bd2b1164a53
Activation functions
Sigmoid Tanh RELU
1 o — ot
2) = = z) = max(0, z
o) = 1o o) = S 9(2) = max(0, 2
1+ 14 14
l L L 1
2 4 0 4 0 1
—4 0 Tl gt
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Now we can deal with images!

Input

Pooling Pooling

Pooling e

- SoftMax
Convolution Convolution  Convolution o ?ﬁ':é‘:;‘g:l“
T s i
Kernel RelU RelU RelU Flatten
Layer
c Fully »
F o -Connect
eature Maps Layer
| | |
5 . : Probabilistic
Feature Extraction Classification Distribution
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Check the fancy visualization of features learned with ConvNets: https://microscope.openai.com/models Image sources httpss/ de Ji5-way-3bd2b1164253
Visualizing CNN filters
Low-Level| [Mid-Level| |High-Level Trainable
Feature Feature Feature Classifier
i i 1Y
52

26



What kind of tasks can we
perform?

* Classification, Regression
* Segmentation

* Prediction of next image
* Content generation

* Feature extraction

* Descriptions

[ )
.

Other Computer Vision Tasks

Semantic Classification Object Instance
Segmentation + Localization Detection Segmentation

=y

GRASS, CAT, CAT DOG, DOG, CAT  DOG, DOG, CAT
~ TREE\’KSKY 7 Y 7N Y o
No objects, just pixels Single Object Multiple Object
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Standard CNN architecture
(eg. VGGNet, ResNet, Inception, etc.)

= =

transferring
| the network weights |-}

custom top
layers

ﬁ
=& S - Prediction
D

FREEZE LEARN

Please ask any questions!

| UNDERSTAND

“\DEER.LEARNING

guEmedehei ator.net
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Resources

MIT Spring Courses that may be offered again in the future:
6.8985 Artificial Intelligence for Business
6.5986 Large Language Models and Beyond

15.804 Special Seminar in Management (Intro to Deep Learning)

The famous Introduction to Deep Learning class of MIT covers more because this is a full week of content. I highly recommend checking their slides in the

topics of interest! http://introtodeeplearning.com/

The Computer Vision class of MIT (you have a quick glimpse at the subjects of interest): http://6.869.csail. mit.edu/sp22

The NLP course of MIT: https://www.mit.edu/~jda/teaching/6.864.

Berkeley course about DL. Excellent too! I have looked at the slides about Transformers thete several times in the past! https://cs182sp21.github.io

cs231n.stanford.edu

Stanford course about CNNs, excellent as well: http:
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